‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析Expression and function analysis of histidine kinase gene PaHK3a of poplar '84K'
鲁俊倩;武舒;钟姗辰;张伟溪;苏晓华;张冰玉;
摘要(Abstract):
【目的】干旱、高盐等逆境胁迫严重影响了植物的生长发育。研究表明,组氨酸激酶在植物逆境响应中起重要作用。本研究对银腺杨‘84K’组氨酸激酶基因PaHK3a在不同组织的表达模式分析,检测了其对生长素、细胞分裂素等植物激素处理下及人工干旱、盐碱等非生物胁迫下的表达,结合干旱、盐碱条件下丙二醛(MDA)及保护酶活性等生化指标,对该基因的功能进行了初步鉴定,为杨树抗逆分子育种研究奠定基础。【方法】以‘84K’杨无菌苗为材料,通过实时定量PCR(qRT-PCR)技术分析PaHK3a基因在不同组织的表达模式。对‘84K’杨无菌苗进行浓度为10 mmol/L植物激素处理(ABA、6-BA、IBA、GA3及水杨酸(SA))及非生物胁迫处理(42℃高温、0℃低温、200 mmol/L NaCl和5%PEG6000),采用qRT-PCR技术分析PaHK3a基因对不同植物激素及非生物胁迫的表达响应;进一步对温室‘84K’杨进行自然干旱处理(6、8、10 d)、200 mmol/L NaCl(2、4、6 d)处理,测定不同胁迫时间点叶片PaHK3a基因的表达,以及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性及MDA含量,并分析PaHK3a基因表达与生理指标的相关性,初步鉴定杨树PaHK3a基因的功能。【结果】qRT-PCR结果显示,PaHK3a基因在叶片中表达量最高,根部中等,茎段最低。与正常条件下相比,在高温、低温、NaCl及PEG模拟干旱处理时,PaHK3a基因表达量与对照相比明显增高,分别为对照的2.63、1.49、1.54、1.58倍。用IBA诱导处理时,基因表达量与对照相比差异不大,而在6-BA、ABA、GA3及SA处理时,基因表达量与对照相比均呈现显著下调。在温室干旱、盐碱胁迫处理过程中,PaHK3a基因表达均显著高于对照,呈现先上升后下降的表达模式,MDA含量也呈现类似的趋势,而SOD活性则随处理时间的延长而持续升高,POD活性在干旱胁迫时先上升后下降,而高盐胁迫时呈上升趋势。生理指标与PaHK3a基因表达量相关系分析发现,在干旱和盐胁迫下,PaHK3a基因表达量与叶片MDA含量、SOD活性和POD活性均呈正相关。【结论】PaHK3a基因在‘84K’杨根茎叶中均有表达,且叶中表达量最高;PaHK3a基因表达受细胞分裂素6-BA、GA3及ABA及SA等植物激素的负调控,同时,受温度胁迫、盐胁迫、水分胁迫等非生物胁迫正调控;温室人工干旱盐碱胁迫过程中,PaHK3a基因表达量升高,且与叶片MDA含量、SOD活性、POD活性均具有正相关性。研究结果初步显示,杨树PaHK3a基因参与杨树植物激素激素信号响应,并在抗逆境胁迫过程中发挥重要调控作用。
关键词(KeyWords): 银腺杨‘84K’;组氨酸激酶;基因表达;非生物胁迫
基金项目(Foundation): 国家自然基金项目(31770710);; 转基因生物新品种培育重大课题(2018ZX08020002)
作者(Author): 鲁俊倩;武舒;钟姗辰;张伟溪;苏晓华;张冰玉;
Email:
DOI:
参考文献(References):
- [1]Muller B, Sheen J. Arabidopsis cytokinin signaling pathway[J/OL]. Science Signaling STKE, 2007, 2007(407):cm5[2020-02-13]. https://stke.sciencemag.org/content/2007/407/cm5.
- [2]Werner T, Schmulling T. Cytokinin action in plant development[J]. Current Opinion in Plant Biology, 2009, 12(5):527-538.
- [3]Tran L S, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. PNAS, 2007, 104(51):20623-20628.
- [4]Jeon J, Kim N Y, Kim S, et al. A subset of cytokinin twocomponent signaling system plays a role in cold temperature stress response in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285:23371-23386.
- [5]Sheen J. Phosphorelay and transcription control in cytokinin signal transduction[J]. Science, 2002, 296:1650-1652.
- [6]Heyl A, Schmülling T. Cytokinin signal perception and transduction[J]. Current Opinion in Plant Biology, 2003, 6(5):480-488.
- [7]Schaller F, Zerbe P, Reinbothe S, et al. The allene oxide cyclase family of Arabidopsis thaliana:localization and cyclization[J].FEBS Journal, 2008, 275(10):2428-2441.
- [8]Hwang I, Chen H C, Sheen J, et al. Two-component signal transduction pathways in Arabidopsis[J]. Plant Physiol, 2002,129(5):500-515.
- [9]Maruyama-Nakashita A, Nakamura Y, Yamaya T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots:implication of CRE1/WOL/AHK4 mediated cytokinin-dependent regulation[J]. Plant Journal, 2004, 38(5):779-789.
- [10]Chefdor F, Héricourt F, Koudounas K, et al. Highlighting type ARRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus[J]. Plant Science, 2018, 277:68-78.
- [11]Kim H J, Ryu H, Hong S H, et al. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103(3):814-819.
- [12]Riefler M, Novsk O, Strnad M, et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J]. Plant Cell, 2006, 18:40-54.
- [13]Dello I R, Linhares F S, Scacchi E, et al. Cytokinins determine Arabidopsis root meristem size by controlling cell differentiation[J]. Current Biology, 2007, 17(8):678-682.
- [14]Higuchi M, Pischke M S, Mhnen A P, et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. PNAS, 2004,101(23):8821-8826.
- [15]Bartrina I, Jensen H, Novák O, et al. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size,flowering time and plant longevity[J]. Plant Physiology, 2007,173(3):1783-1797.
- [16]Kang N Y, Cho C, Kim N Y, et al. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana[J]. Journal of Plant Physiology, 2012,169(14):1382-1391.
- [17]Jin J, Nan Y K, Sunmi K, et al. A subset of cytokinin twocomponent signaling system plays a role in cold temperature stress response in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285(30):23371-23386.
- [18]Cortleven A, Nitschke S, Klaumünzer M, et al. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors[J]. Plant Physiology, 2014, 164(3):1470-1483.
- [19]Nieminen K, Immanen J, Laxell M, et al. Cytokinin signaling regulates cambial development in poplar[J]. Proceedings of the National Academy of Sciences, 2008, 105(50):20032-20037.
- [20]Sun J, Niu Q W, Tarkowski P, et al. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis[J]. Plant Physiology,2003, 131(1):167-176.
- [21]Verslues P E. ABA and cytokinins:challenge and opportunity for plant stress research[J]. Plant Molecular Biology, 2016, 91(6):629-640.
- [22]Tran L S, Shinozaki K, Yamaguchi-Shinozaki K, et al. Role of cytokinin responsive two component system in ABA and osmotic stress signaling[J]. Plant Signal&Behavior, 2010, 5(2):148-150.
- [23]Ramsong N, Praveen S, Ratna K, et al. Histidine kinases in plants:cross talk between hormone and stress responses[J]. Plant Signaling&Behavio, 2012, 7(10):1230-1237.
- [24]Wang B, Guo B, Xie X, et al. A novel histidine kinase gene,ZmHK9, mediate drought tolerance through the regulation of stomatal development in Arabidopsis[J]. Gene, 2012, 501(2):171-179.
- [25]Vernooij B, Friedrich L, Weymann K, et al. A central role of salicylic acid in plant disease resistance[J]. Science, 1994, 266:1247-1250.
- [26]Yusuf M, Hasan S A, Ali B, et al. Effect of salicylic acid on salinity-induced changes in Brassica juncea[J]. Journal of Integrative Plant Biology, 2008, 50(9):1096-1102.
- [27]Brito G, Costa A, Fonseca H M A C, et al. Response of Olea europaea ssp. maderensis in vitro shoots exposed to osmotie stress[J]. Scientia Horticulturae, 2003, 97(S3-S4):411-417.
- [28]张磊,谢锦忠,张玮,等.模拟干旱环境下伐桩注水对毛竹生理特性的影响[J].林业科学研究, 2017, 30(1):145-153.Zhang L, Xie J Z, Zhang W, et al. Effects of water storage in bamboo stumps on physiological characteristicsof phyllostachys edulis under simulated drought environment[J]. Forest Research,2017, 30(1):145-153.
- [29]党晓宏,高永,蒙仲举,等. 3种滨藜属植物幼苗叶片对NaCl胁迫的生理响应[J].北京林业大学学报, 2016, 38(10):38-49.Dang X H, Gao Y, Meng Z J, et al. Leaf physiological characteristics of seedlings of three Atriplex species under NaCl stress[J]. Journal of Beijing Forestry University, 2016, 38(10):38-49.
- [30]Sofo A, Dichio B, Xiloyannis C, et al. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree[J]. Plant Science, 2004, 166(2):293-302.
- [31]Kong J, Dong Y, Xu L, et al. Role of exogenous nitric oxide in alleviating iron deficiency-induced peanut chlorosis on calcareous soil[J]. Journal of Plant Interactions, 2014, 9(1):450-459.