杨树HSF家族基因生物信息学与胁迫应答表达分析Bioinformatics and stress response expression analysis of poplar HSF family genes
王雪怡;顾咏梅;张雪梅;姜廷波;刘焕臻;
摘要(Abstract):
【目的】探究小黑杨热激转录因子HSF在应答高温和高盐胁迫时发挥的关键作用。保守结构域和顺式作用元件预测等对杨树HSF转录因子家族基因进行生物信息学分析。本研究以小黑杨为材料,经过37℃高温胁迫半个月后观察其形态变化;将小黑杨在37℃下分别处理0、12、24、48 h,采用RT-qPCR对小黑杨组织中的PsnHSFs基因进行时空表达分析;将小黑杨于150 mmol/L NaCl胁迫分别处理0、24 h,通过RNA-seq分析PsnHSFs基因的相对表达量变化,并通过RT-qPCR进行验证。【结果】通过结构特征和系统发育比较将29个HSF转录因子家族基因分成A、B和C三个亚家族,各亚家族分别包含18、10和1个HSF基因;HSF编码的氨基酸序列长度介于209~595之间,均为亲水性蛋白;其N端具有高度保守的DBD结构域,由三个保守基序构成;HSF基因启动子序列中包含DRE core、ABRE和TC-rich等多种顺式作用元件。小黑杨经37℃高温处理后其株高仅为对照的76.51%,叶片呈卷曲状,叶表面粗糙,叶面积显著减小且苗干多侧枝柔软无韧性。RT-qPCR与RNA-seq结果表明,PsnHSFs被高温、高盐胁迫诱导表达。高温处理后其株高仅为对照的76.51%,叶片呈卷曲状,叶表面粗糙,叶面积显著减小且苗干多侧枝柔软无韧性。RT-qPCR与RNA-seq结果表明,PsnHSFs被高温、高盐胁迫诱导表达。家族基因以及揭示HSF参与木本植物胁迫应答的分子机制调控具有参考意义。
关键词(KeyWords): 小黑杨;PsnHSFs;生物信息学;胁迫应答
基金项目(Foundation): 转基因生物新品种培育重大专项(2018ZX08020002)
作者(Author): 王雪怡;顾咏梅;张雪梅;姜廷波;刘焕臻;
Email:
DOI:
参考文献(References):
- [1]Kerchev P, van der Meer T, Sujeeth N, et al. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants[J]. Biotechnology Advances, 2020, 40:107503.
- [2]Przemys?aw?K, Dominika R, Eva I, et al. Influence of abiotic stress factors on the antioxidant properties and polyphenols profile composition of green barley(Hordeum vulgare L.)[J].International Journal of Molecular Sciences, 2020, 21(2):397.
- [3]Yang X H, Liang Z, Lu C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants[J]. Plant Physiology, 2005, 138(4):2299-2309.
- [4]Gao S, Han H, Feng H L, et al. Overexpression and suppression of violaxanthin de-epoxidase affects the sensitivity of photosystem II photoinhibition to high light and chilling stress in transgenic tobacco[J]. Journal of Integrative Plant Biology, 2010, 52(3):332-339.
- [5]Lu Y. Identification and roles of photosystem II assembly,stability, and repair factors in Arabidopsis[J]. Frontiers in Plant Science, 2016, 7:168.
- [6]Murata N, Allakhverdiev S I, Nishiyama Y. The mechanism of photoinhibition in vivo:re-evaluation of the roles of catalase, atocopherol, non-photochemical quenching, and electron transport[J]. Biochimica et Biophysica Acta, 2012, 1817(8):1127-1133.
- [7]Min L, Li Y Y, Hu Q, et al. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton[J]. Plant Physiology, 2014, 164(3):1293-1308.
- [8]Hirt H, Shinozaki K. Plant responses to abiotic stress[M]. Berlin:Springer Heidelberg, 2004:4.
- [9]Huang Y C, Niu C Y, Yang C R, et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology, 2016, 172(2):1182-1199.
- [10]Nover N, Bharti K, D?ing P, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress&Chaperones, 2001, 6(3):177-189.
- [11]Zhang J, Jia H X, Li J B, et al. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar[J].Scientific Reports, 2016, 6:30050.
- [12]Guo M, Liu J H, Ma X, et al. The plant heat stress transcription factors(HSFs):structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 2016, 7:114.
- [13]Zupanska A K, LeFrois C, Ferl R J, et al. HSFA2 functions in the physiological adaptation of undifferentiated plant cells to spaceflight[J]. International Journal of Molecular Sciences, 2019,20(2):390.
- [14]Zang D, Wang J X, Zhang X, et al. Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression[J]. Journal of Experimental Botany, 2019, 70(19):5355-5374.
- [15]姚文静.杨树转录因子ERF76基因耐盐功能研究[D].哈尔滨:东北林业大学, 2016.Yao W J. Functional analysis of poplar transcription factor ERF76gene on salt-stress tolerance[D]. Harbin:Northeast Forestry University, 2016.
- [16]Tang M J, Xu L, Wang Y, et al. Genome-wide characterization and evolutionary analysis of heat shock transcription factors(HSFs)to reveal their potential role under abiotic stresses in radish(Raphanus sativus L.)[J]. BMC Genomics, 2019, 20(1):1-13.
- [17]Scharf K D, Berberich T, Ebersberger I, et al. The plant heat stress transcription factor(Hsf)family:structure, function and evolution[J]. Biochimica et Biophysica Acta(BBA):Gene Regulatory Mechanisms, 2012, 1819(2):104-119.
- [18]Peteranderl R, Rabenstein M, Shin Y K, et al. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor[J]. Biochemistry, 1999, 38(12):3559-3569.
- [19]李春艳. AP1基因转化双单倍体小黑杨及其数字基因表达谱分析[D].哈尔滨:东北林业大学, 2013.Li C Y. Genetic transformation of AP1 gene in haploid Populus simonii×P. nigra and the DEGS analysis[D]. Harbin:Northeast Forestry University, 2013.
- [20]牛京萍,刘轶,由香玲.小黑杨花粉植株的获得及遗传转化[J].福建林业科技, 2016, 43(4):13-16.Niu J P, Liu Y, You X L. Induction and genetic transformation of pollen haploid plants of Populus simonii×P. nigra[J]. Fujian Forestry Science and Technology, 2016, 43(4):13-16.
- [21]Deutsch F, Kumlehn J, Ziegenhagen B, et al. Stable haploid poplar callus lines from immature pollen culture[J]. Physiologia Plantarum, 2004, 120(4):613-622.
- [22]彭儒胜,赵大根,张兴芬,等.杨树单倍体育种及其影响因素[J].防护林科技, 2007, 25(6):59-60, 73.Peng R S, Zhao D G, Zhang X F, et al. Haploid breeding of poplar and its influencing factors[J]. Shelterbelt Technology, 2007,25(6):59-60, 73.
- [23]王家玉,赵威威.银中杨、小黑杨树种的特性分析[J].科技风,2011, 24(7):203.Wang J Y, Zhao W W. Characteristics of Populus alba×P.berolinensis and Populus simonii×P. nigra[J]. Technology Wind, 2011, 24(7):203.
- [24]von Koskull-D?ring P, Scharf K D, Nover L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science,2007, 12(10):452-457.
- [25]Liu B, Hu J J, Zhang J. Evolutionary divergence of duplicated Hsf genes in Populus[J]. Cells, 2019, 8(5):438.
- [26]Akerfelt M, Morimoto R I, Sistonen L. Heat shock factors:integrators of cell stress, development and lifespan[J]. Nature Reviews Molecular Cell Biology, 2010, 11(8):545-555.
- [27]Fitter A H. Rapid changes in flowering time in British plants[J].Science, 2002, 296:1689-1691.
- [28]Alcazar R, Parker J E. The impact of temperature on balancing immune responsiveness and growth in Arabidopsis[J]. Trends Plant Sci, 2011, 16(12):666-675.
- [29]Gray S B, Brady S M. Plant developmental responses to climate change[J]. Developmental Biology, 2016, 419(1):64-77.
- [30]Zha Q, Xi X J, He Y, et al. Transcriptomic analysis of the leaves of two grapevine cultivars under high-temperature stress[J].Scientia Horticulturae, 2020, 265:109265.
- [31]李思达.小黑杨PxbHLH01/02基因在逆境胁迫中的功能分析[D].哈尔滨:东北林业大学, 2018.Li S D. Functional analysis of PxbHLH01/02 genes in Populus simonii×P. nigra under stress condition[D]. Harbin:Northeast Forestry University, 2018.
- [32]Charng Y Y, Liu H C, Liu N Y, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology, 2007,143(1):251-262.
- [33]Jung H S, Crisp P A, Estavillo G M, et al. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light[J]. Proceedings of the National Academy of Sciences, 2013, 110(35):14474-14479.
- [34]刘中原,刘峥,徐颖,等.白桦HSFA4转录因子的克隆及耐盐功能分析[J].林业科学, 2020, 56(5):69-79.Liu Z Y, Liu Z, Xu Y, et al. Cloning and salt tolerance analysis of transcription factor HSFA4 from Betula platyphylla[J]. Forestry Science, 2020, 56(5):69-79.
- [35]Perez-Salamo I, Papdi C, Rigo G, et al. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6[J]. Plant Physiology, 2014, 165(1):319-334.
- [36]Chauhan H, Khurana N, Agarwal P, et al. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment[J]. PLoS ONE, 2013, 8(11):e79577.
- [37]Bian X H, Li W, Niu C F, et al. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis[J]. New Phytologist, 2020, 225(1):268-283.