毛乌素沙地4种典型植物叶片凝结水吸收能力及其水分生理响应Foliar condensate absorption capacity of four typical plant species and their physiological responses to water in the Mu Us Sandy Land of northwestern China
李鹭辰;桂子洋;秦树高;张宇清;刘靓;杨凯捷;
摘要(Abstract):
【目的】明确毛乌素沙地4种典型植物沙蓬、软毛虫实、刺藜和苦豆子的叶片凝结水吸收能力,阐明植物叶片对凝结水浸润的水分生理响应。【方法】将受试植物置于用高丰度氘水配置的人工标记凝结水环境中,进行凝结水浸润处理,通过比较处理组和对照组植物叶水、根水及根际土壤水的稳定氢同位素丰度变化,确定受试植物叶片是否具有吸水能力,示踪叶片吸收凝结水后,是否将水分转移到植物根系及根际土壤之中;使用露点水势仪、电子天平及气孔计,测定受试植物处理前后的叶水势、叶片含水量和气孔导度变化,了解受试植物对凝结水浸润的水分生理响应。【结果】(1)高丰度氘标记凝结水浸润后,处理组4种受试植物的叶水δ~2H(20‰~100‰)均显著高于对照组(-25‰~-15‰),而根水(-45‰~-30‰)及根际土壤水(-50‰~-40‰)则与对照组无显著差异;(2)经过凝结水浸润试验处理,沙蓬的叶水势升高23.81%,叶含水量升高2.94%,气孔导度降低57.40%;软毛虫实的叶含水量升高了2.45%,叶水势和气孔导度无显著变化;刺藜的叶水势升高了21.95%,气孔导度和叶含水量无显著变化;苦豆子的叶水势、叶含水量和气孔导度均无显著变化。【结论】毛乌素沙地4种典型植物叶片均具有凝结水吸收能力,叶片吸收的水分未被发现转移至根部或根际土壤。沙蓬、软毛虫实、刺藜通过叶片吸水显著改善了自身水分生理状态,这可能是其适应沙地严酷水分条件的重要水分利用机制,有助于植物存活,而苦豆子叶片对凝结水浸润无明显响应,不能有效利用叶片吸水改变其水分生理状态。
关键词(KeyWords): 凝结水;叶片吸水;生理响应;水分利用策略;沙生植物
基金项目(Foundation): 国家自然科学基金青年科学基金项目(31700638);; 中央高校基本科研业务费专项(2015ZCQ-SB-02)
作者(Author): 李鹭辰;桂子洋;秦树高;张宇清;刘靓;杨凯捷;
Email:
DOI:
参考文献(References):
- [1]蒋瑾,王康富,张维静.沙地凝结水及在水分平衡中作用的研究[J].干旱区研究, 1993, 10(2):1-9.Jiang J, Wang K F, Zhang W J. Study on condensation water of sandy land and its role in water balance[J]. Arid Zone Research,1993, 10(2):1-9.
- [2]Zangvil A. Six years of dew observations in the Negev Desert,Israel[J]. Journal of Arid Environments, 1996, 32(4):361-371.
- [3]Kalthoffa N, Fiebig-Wittmaack M, Meiβner C, et al. The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes[J]. Journal of Arid Environments, 2006,65(3):420-443.
- [4]Malek E, McCurdy G, Giles B. Dew contribution to the annual water balances in semi-arid desert valleys[J]. Journal of Arid Environments, 1999, 42(2):71-80.
- [5]郭晓楠,查天山,贾昕,等.典型沙生灌木生态系统凝结水量估算[J].北京林业大学学报, 2016, 38(10):80-87.Guo X N, Zha T S, Jia X, et al. Estimation of dewfall amount in a typical desert shrub ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(10):80-87.
- [6]Scanlon B R, Milly P C D. Water and heat fluxes in desert soils(2):numerical simulations[J]. Water Resources Research,1994, 30(3):721-734.
- [7]曾亦键,万力,王旭升,等.浅层包气带地温与含水量昼夜动态的实验研究[J].地学前缘, 2006, 13(1):52-57.Zeng Y J, Wan L, Wang X S, et al. An experimental study of day and night trends of soil temperature and moisture in the shallow unsaturated zone[J]. Earth Science Frontiers, 2006, 13(1):52-57.
- [8]Jacobs A F G, Heusinkveld B G, Berkowicz S M. Dew deposition in a desert system:a simple simulation model[J]. Journal of Arid Environments, 1999, 42(3):211-222.
- [9]Baguskas S A, King J Y, Fischer D T, et al. Impact of fog drip versus fog immersion on the physiology of bishop pine saplings[J]. Functional Plant Biology, 2017, 44(3):339-350.
- [10]龚雪伟.荒漠木本植物光合器官吸收冠层凝结水机理探究[D].乌鲁木齐:新疆大学, 2017.Gong X W. A probe into the mechanisms of canopy dew uptake by photosynthetic organs of desert trees:based on molecular,cellular and physiological perspectives[D]. Urumqi:Xinjiang University, 2017.
- [11]Wang X H, Xiao H L, Cheng Y B, et al. Leaf epidermal waterabsorbing scales and their absorption of unsaturated atmospheric water in Reaumuria soongorica, a desert plant from the northwest arid region of China[J]. Journal of Arid Environments, 2016,128:17-29.
- [12]Wang X H, Xiao H L, Ren J, et al. An ultrasonic humidification fluorescent tracing method for detecting unsaturated atmospheric water absorption by the aerial parts of desert plants[J]. Journal of Arid Land, 2016, 8(2):272-283.
- [13]Yan X, Zhou M X, Dong X C, et al. Molecular mechanisms of foliar water uptake in a desert tree[J]. AoB Plants, 2015, 7:129.
- [14]庄艳丽,赵文智.荒漠植物雾冰藜和沙米叶片对凝结水响应的模拟实验[J].中国沙漠, 2010, 30(5):1068-1074.Zhuang Y L, Zhao W Z. Experimental study of effects of artificial dew on Bassia dasyphylla and Agriophyllum squarrosum[J].Journal of Desert Research, 2010, 30(5):1068-1074.
- [15]Stone E C. Dew as an ecological factor(II):the effect of artificial dew on the survival of Pinus ponderosa and associated species[J]. Ecology, 1957, 38(3):414-422.
- [16]Martin C E, Willert D J. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in Southern Africa[J]. Plant Biology, 2000, 2(2):229-242.
- [17]Hill A J, Dawson T E, Shelef O, et al. The role of dew in Negev desert plants[J]. Oecologia, 2015, 178(2):317-327.
- [18]Goldsmith G R, Matzke N J, Dawson T E. The incidence and implications of clouds for cloud forest plant water relations[J].Ecology Letters, 2013, 16(3):307-314.
- [19]Fu P L, Liu W J, Fan Z X, et al. Is fog an important water source for woody plants in an Asian tropical karst forest during the dry season?[J]. Ecohydrology, 2016, 9(6):964-972.
- [20]郑玉龙,冯玉龙.西双版纳地区附生与非附生植物叶片对雾水的吸收[J].应用生态学报, 2006, 17(6):977-981.Zheng Y L, Feng Y L. Fog water absorption by the leaves of epiphytes and non-epiphytes in Xishuangbanna[J]. Chinese Journal of Applied Ecology, 2006, 17(6):977-981.
- [21]郑新军,李嵩,李彦.准噶尔盆地荒漠植物的叶片水分吸收策略[J].植物生态学报, 2011, 35(9):893-905.Zheng X J, Li S, Li Y. Leaf water uptake strategy of desert plants in the Junggar Basin, China[J]. Chinese Journal of Plant Ecology,2011, 35(9):893-905.
- [22]Vitarelli N C, Riina R, Cassino M F, et al. Trichome-like emergences in Croton of Brazilian highland rock outcrops:evidences for atmospheric water uptake[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 22:23-35.
- [23]Pina A L C B, Zandavalli R B, Oliveira R S, et al. Dew absorption by the leaf trichomes of Combretum leprosum in the Brazilian semiarid region[J]. Functional Plant Biology, 2016, 43(9):851-861.
- [24]Eller C B, Lima A L, Oliveira R S. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis(Winteraceae)[J]. New Phytologist, 2013, 199(1):151-162.
- [25]岑宇,刘美珍.凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J].植物生态学报, 2017, 41(11):1199-1207.Cen Y, Liu M Z. Effects of dew on eco-physiological traits and leaf structures of Leymus chinensis and Agropyron cristatum grown under drought stress[J]. Chinese Journal of Plant Ecology,2017, 41(11):1199-1207.
- [26]Zhuang Y L, Ratcliffe S. Relationship between dew presence and Bassia dasyphylla plant growth[J]. Journal of Arid Land, 2012,4(1):11-18.
- [27]Baguskas S A, Clemesha R E S, Loik M E. Coastal low cloudiness and fog enhance crop water use efficiency in a California agricultural system[J]. Agricultural and Forest Meteorology, 2018, 252:109-120.
- [28]林光辉.稳定同位素生态学[M].北京:高等教育出版社, 2013,3-29.Lin G H. Stable Isotope Ecology[M]. Beijing:Higher Education Press, 2013, 3-29.
- [29]West A G, Patrickson S J, Ehleringer J R. Water extraction times for plant and soil materials used in stable isotope analysis[J].Rapid Communications in Mass Spectrometry, 2006, 20(8):1317-1321.
- [30]刘文茹,彭新华,沈业杰,等.激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正[J].生态学杂志, 2013, 32(5):1181-1186.Liu W R, Peng X H, Shen Y J, et al. Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy(IRIS)and their spectral contamination corrections[J]. Chinese Journal of Ecology, 2013, 32(5):1181-1186.
- [31]Schultz N M, Griffis T J, Lee X, et al. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water[J]. Rapid Commun Mass Spectrom, 2011, 25(21):3360-3368.
- [32]Kim K, Lee X. Transition of stable isotope ratios of leaf water under simulated dew formation[J]. Plant, Cell&Environment,2011, 34(10):1790-1801.
- [33]Guzmán-Delgado P, Earles J M, Zwieniecki M A. Insight into the physiological role of water absorption via the leaf surface from a rehydration kinetics perspective[J]. Plant, Cell&Environment,2018, 41(8):1886-1894.
- [34]Emery N C. Foliar uptake of fog in coastal California shrub species[J]. Oecologia, 2016, 182(3):731-742.
- [35]Chamel A, Pineri M, Escoubes M. Quantitative determination of water sorption by plant cuticles[J]. Plant Cell and Environment,1991, 14(1):87-95.
- [36]Burgess S S O, Dawson T E. The contribution of fog to the water relations of Sequoia sempervirens(D. Don):foliar uptake and prevention of dehydration[J]. Plant, Cell and Environment, 2004,27(8):1023-1034.
- [37]屠骊珠.内蒙古西部地区九种旱生植物叶的解剖观察[J].内蒙古大学学报(自然科学版), 1982, 13(4):485-504.Tu L Z. Anatomical observations on nine xerophytes leaves in the west part of the Inner Mongolia[J]. Journal of Inner Mongolia University(Natural Science Edition), 1982, 13(4):485-504.
- [38]Yates D J, Hutley L B. Foliar uptake of water by wet leaves of Sloanea woollsii, an Australian subtropical rainforest tree[J].Australian Journal of Botany, 1995, 43(2):157-167.
- [39]Rundel P W. Water uptake by organs other than roots[J].Physiological Plant Ecology II, 1982, 12:111-134.
- [40]Grammatikopoulus G, Manetas Y. Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance[J]. Canadian Journal of Botany, 1994, 72(12):1805-1811.
- [41]Alvarado-Barrientos M S, Holwerda F, Asbjornsen H, et al.Suppression of transpiration due to cloud immersion in a seasonally dry Mexican weeping pine plantation[J]. Agricultural and Forest Meteorology, 2014, 186:12-25.
- [42]Berry Z C, Smith W K. Cloud pattern and water relations in Picea rubens and Abies fraseri, southern Appalachian Mountains,USA[J]. Agricultural and Forest Meteorology, 2012, 162-163:27-34.
- [43]付晓玥.阿拉善荒漠植物叶片性状研究[D].呼和浩特:内蒙古大学, 2012.Fu X Y. Studies on leaf traits of Alashan desert plants[D].Huhhot:Inner Mongolia University, 2012.
- [44]王春海.中国藜属及近缘属植物的系统学研究[D].曲阜:曲阜师范大学, 2015.Wang C H. Systematic study on Chenopodium and the related genera in China[D]. Qufu:Qufu Normal University, 2015.
- [45]Goldsmith G R, Lehmann M M, Cernusak L A, et al. Inferring foliar water uptake using stable isotopes of water[J]. Oecologia,2017, 184(4):763-766.
- [46]范志超.不同生境苦豆子种群生产性能与种子休眠特性研究[D].兰州:兰州大学, 2016.Fan Z C. Study on productivity and seed dormancy characteristics of Sophora alopecuroides L. populations in different habitats[D].Lanzhou:Lanzhou University, 2016.